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Abstract--A quanta1 calculation of the continuous absorption coefficient of the hydrogen quasi-molecule for 
3 + the transition Iso2sa ‘Xl + Isa2po Z, is described. The calculation includes the explicit dependence of the 

matrix element of the electronic dipole transition moment on the rotational state of the molecule. 
The detailed summation of the transition probability over all rotational states for temperatures at which 

several states are populated differs significantly from the probability given by the contribution of the rotation- 
less (J’ = 0) state multiplied by the rotational partition function. The difference is larger than the errors resulting 
from the &function approximation to the continuum wave functions used in previously published calculations 
of this absorption coefficient. 

1. INTRODUCTION 

THEORETICAL calculations of the strength of continuous molecular spectra have generally 

proceeded from the approximation OfGIBsoN, RICE and BAYLISS”) that the matrix element of 
the electronic dipole transition moment is independent of the rotational state J of the nuclei. 
The assumption of rotational independence is most likely to fail in the lightest molecules 

(with the widest spacing of the rotational levels), as has been noted by BUCKINGHAM, 
REID and SPENCE.~~) They calculated matrix elements of the 2pa ‘C: t Iso “Cl transi- 
tion for a few non-zero J-states in the hydrogen molecular. ion H: and established 
the existence of a variation, but did not investigate it in detail. The present paper reports 
a calculation of the transition probability in the 1~02~0 “Xl t lsa2prr “C: continuum 

of Hz in which we explicitly sum over rotation-dependent matrix elements, and gives a 
comparison of the summation to a rotationless calculation. 

The electronic states a “Cl and b “TX:, and transitions between them, were the subjects 
of an important series of papers by COOLIDGE and JAMES and their associatest”~“’ on the 

calculation of electronic wave functions, potential-energy curves, the dipole moment 
operator, and vibrational wave functions. In 1936 (51 they found that the FranckLCondon 
principle (constant dipole moment) was a poor approximation for continuous molecular 
spectra. In 1939 (9’ they made the first calculation using a variable dipole moment. They 
published mean lifetimes for the first four vibrational states in N ‘Xl, and gave the relative 
(unnormalized) wavelength dependence of the emission intensity from these four states. 
However, they did not explicitly combine these and publish absolute emission or absorp- 
tion coefficients. 

1555 
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In 1960 ERKOVICH”‘) published quantitative calculations of the absorption into the 

first four vibrational states (intrinsically the same information as in the James and Coolidge 
calculations). However, he made an error in estimating the appropriate cross section for 

the number of collisions between ground-state hydrogen atoms in the h “C: state (the 
number of “quasi-molecules”). The wavelength dependence of his result was correct, but 
the absolute strength of his calculation was too large by about two orders of magnitude, 
as was noted by SOLOMON(“) and SOSHNIKOV.““’ 

Solomon reported new calculations in which he extended the vibrational sum through 
1.’ = 7 for possible applications in high-temperature astrophysical problems. His results 
had a slightly different wavelength dependence from those of Erkovich, and were about 

one per cent of the absolute strength of the latter. Soshnikov published similar results, but 
he did not describe his calculation in detail. 

Both Erkovich and Solomon used James and Coolidge’s modification’“’ of the Condon 
“reflection” method(14’ (first used in a calculation by WINANS and STUECKELRERG”~’ and 

sometimes known by their names), in which the continuum wave function is replaced by a 
S-function located at the classical turning point of the motion. James and Coolidge had 
found that, when modified to include the variable dipole moment, the &function approxima- 

tion was superior to a Franck-Condon calculation (constant dipole moment) using full 
continuum wave functions. 

We compare our rotationless calculation, which uses full continuum wave functions. 
with the S-function calculation of Solomon and find that the difference is essentially the 
same as that reported in the original work of James and Coolidge. This independently 

confirms the size of the error that can be expected in d-function calculations and the 
correctness of Solomon’s calculation (to within his approximations). 

However, we shall see that the difference between the rotationless calculation and the 

detailed summation over rotational states, for temperatures at which several rotational 
states are populated, is larger than the above difference between the d-function calcula- 
tion and that using full continuum wave functions. The detailed summation varies from 

twice the rotationless calculation at short wavelengths to two-thirds of it at long wave- 
lengths. Thus, the neglect of rotational dependence of the matrix element is the major 

source of error at such wavelengths and temperatures. 
An examination of the importance of this transition as a source of absorption in stellar 

atmospheres, reported elsewhere. (Ih) indicates that it is a significant contributor to opacity 

near i = 1700 A in the solar atmosphere. 

3. THEORY 

In the Born-Oppenheimer approximation, the eigensolutions of the Hamiltonian 

(1) 

where 
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and V(r, R) is the total electrostatic interaction of the electrons and the nuclei, are products 
of an electronic wave function $,” and a nuclear wave function 4: : 

xAr, RI = &VW%-). (2) 

The coordinate of the ith electron, with mass m, is ri; r stands for all electronic coordinates. 
The coordinate of thejth nucleus, with mass M, is Rj; R is the internuclear distance. 

The $a” are the solutions of the simplified Hamiltonian for R fixed (TN = 0) : 

[T + V(r, R)]$R = FI~I$~. C’ a ‘0 u (3) 

The 4: are the solutions of a Schrodinger equation for the nuclear motion in which 
the electronic coordinates have been averaged over and do not appear explicitly : 

(TN + &K(R) = ~,&(W. (4) 

The invariance of the Hamiltonian in equation (3) under rotation ensures that the 
eigenvalues ebR’ are functions of only R = /RI (the nuclei move in a central potential). The 
nuclear equation (4) therefore separates into radial and angular parts, 

4:(R) = W;,,(R)R- ‘<Pu,M(O, $), (5) 

with ;Y? the spherical harmonics (eigenfunctions of J2 and Jz) and W;., the solutions of 
the radial eigenvalue equation, 

J(J + 1 )V 
2pR2 I WE,J = 0. (6) 

Normalization of the angular functions is 
P I” 

JJ %Yu,M*(O, ~)Fj!‘(O, $J) sin 0 d0 d& = 6J,r6MM,. 

Normalization of the radial functions in the bound state is 

In the repulsive state b “C,‘, we seek a solution to the nuclear equation that asymptoti- 
cally corresponds to the stationary state of scattering 

&f(R) - eiK.R +f(@ eiKR/R. (7) 

This is normalized to unit density of incident plane waves eiK.R, which are eigenfunctions 
of the linear momentum KZt. 

Expanding equation (7) in the spherical harmonics for axes along K, we obtain 

c#$(R) J(471) Iv KRC (25”+ l)l/ziJ” eib,. sin 
J” 

(8) 

It is convenient to identify a radial function associated with the J”th angular state by the 
solution of the nuclear equation for the repulsive state which is regular at zero and 
asymptotically 

J”7L 
KR--+dJ.. 

2 
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The probability Bff’” of an electric dipole transition from a state 1) to a state M, with 
E,, < E,, accompanied by absorption of a photon of energy /rr = E,-E,], averaged ovet 
all polarization directions is 

for an incident beam of one photon crossing unit area per second per unit frequency 
interval. 

In our particular case. we are interested in transitions between h = lsa2pa “Xz. the 
lowest triplet electronic state of ungerade symmetry (odd in reflection of II/,” about the 
origin), and a = Isrr2so “XL?, the lowest triplet gerade state. In this case, the transition 
matrix element in (10) becomes 

xB(r, RI c erix,(r, RJ dr dR i 

= 4{*(R) 
j I, 

Y?!*(r) 1 er#!(r) dr @(R) dR L 1 

where D,,,(R) is the electronic dipole moment operator. 
Now, since u and h are both C states (zero orbital angular momentum of the electrons 

along the internuclear axis), the cylindrical symmetry ensures that the matrix element of 
the vector operator Cer, can only have a non-zero value along the internuclear axis. I 

D,,(R) = L(R)fi. (I?) 

which establishes its transformation properties under rotation in the space of the nuclei. 
The total transition probability R,, per unit incident photon beam at a given frequency 

I’ results from summing and integrating equation (10) over all initial and final states. 
weighted by the population N(p) of the initial states and including the d-function behavior 
of Bc’Z at frequencies that conserve the energy : 

In our case. we are summing over the final bound states a = UCJ’M and integrating 
over the initial continuum states /j = h, K: 

X 

Since K is a monotonic function of V, we note that 

(13) 
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and the rest of equation (13) is independent of ST so that it becomes, from equations (5) 

(0 (9), (11) and (12), 

with K2h2/21( = EavJsM, -1~. 
For temperatures at which the population of excited atomic states is negligible, three- 

quarters of all pairs of free atoms are in the b “C: state; the remaining quarter are in the 
continuous part of the X ‘Cl ground state. The Maxwell-Boltzmann distribution of 

quasi-molecules among states K in the electronic state b “C: is 

N(b, K) = 3n$ 
A3 

4 (274CT)3’2 exp - 

Finally, introducing the nuclear spin statistical weights of the rotational levels GJr,* 
and performing the sums over J” and over the degenerate magnetic substates M’, we 
have our complete expression 

~~-a - 87r3v 3nz h3 
3hc 4 H(2npkT)3!2 

1 
2 

@LJ, + ,(W,,(R)~:J(R) dK 

2 

+ J’ &,J,- I(WUR).%.JW) dR II , (15) 

with 

K = $E.,. 1 
l/2 

- hv) ( 

and 
* OJ’ = 4; J’ even 

2: J’ odd. 

* In the “Xl state, symmetric under exchange of the electrons, the symmetric nuclear space wave functions 
(even J’) require antisymmettic spin functions so that (3 ,, = :. the three symmetric functions being excluded by 
the required antisymmetric character of the total wave function under exchange of all the particles. Note that 
the average value of GJ,( = 4) is just the symmetry factor or double counting factor in the number of different 
pairs in a collection of indistinguishable atoms. 
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3. COMPUTATIONS 

In order to determine &“, we need values for the two potential-energy curves E,(R) 
and c,,(R) and values of the electronic dipole moment operator D,JR). 

(a) c,(R) und tlw hound wmrjitnctions 

Although the two other calculations of this absorption coefficient for high temperatures 
mentioned above (l “12) used a simple Morse potential to represent the bound state, we 
do not, since there are several simple forms of potential curves that can be numerically 

integrated to give better agreement with the experimental energies than does the Morse 
curve. Moreover, numerical parameters for several other curves are known for u “CL? 

since it was used by COOLIDGE, JAMES and VERNON (‘) in a comparison of the relative 
accuracy of 14 different empirical potential curves. Their “best” curve was a power series 
expansion in terms of the square root of the Morse function which was first suggested by 
DUNHAM,(“) and which we might call the Morse-Dunham function, since it combines 
the inherently appropriate shape of the Morse curve with the flexibility and ease of manipu- 

lation of Dunham’s power series approach. It has the general form 

and is used in this computation with the following coefficients :(” 

D, = 24459 cm-’ ; c2 = 0.12550; c3 = 0.02948 : c4 = 0.10522 ; 

cs = 0.05281 ; 1’6 = O-05525: c, = 0.02513: cR = 0.00601 ; 

[j = 1.7104; F,, = 1.8677~~ 

We numerically integrate equation (6) and locate eigenenergies by an iterative pro- 
cedure,* finding eigenfunctions that are asymptotic to zero for both increasing and 

decreasing internuclear distance. 
The computed vibrational term differences are compared with the observed”8’ in 

Table I. The rotational term differences are compared in Table 2.“*,“’ Solutions are 
limited to states with energies less than about 17 500 cm-’ above the minimum of u “C:. 
This is approximately vibrational-rotational state 13 = 8, J’ = 0 or L‘ = 0, J’ = 25. Above 
this energy, other molecular electronic states of the same symmetry exist (lsanio “C:), 

which we neglect. 

* For a given trial energy E’“’ two logartthmic slopes S’$ = (l/9r,J)(d,&,.,,/dR) of the wave functton (5”:’ 
corresponds to a solution of equation (6) that is asymptotic to zero for R + 0, and S’;’ to one asymptotic to zero 
for R - m) are determined from the mean value of slopes asymptotically divergent upward and downward. 
The slopes S!‘! and St:’ are equal only for an eigenvalue of the energy Et”’ = E,,,,. A second iterative procedure 
linearly interpolates the differences AS 01’ = S’~’ -S’? at two successive trial energies for a new energy 

R,“+‘, _ EC”‘_ _?R’“~‘l _ 
i AS’“’ _ AS’” 1) I 

AS’“’ 

until AS’“+ ” is no improvement over AS’“’ (generally AS’“’ 2 1O~‘S’“‘). The result is essentially the mean of two 
energies, whose wave functions are indistinguishable in the classical region and for the terminal loops but which 
eventually diverge and become infinite in opposite senses, as described by COOLIDGE. JAMES and PRESENT.“’ 
Beyond the point of divergence, defined as a change of sign of tie,,, or (dd,,,,/dR), the wave functions are set 
equal to zero. 
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TABLE ~.COMPAR~SONOFTHEOBSERVED~~~) VIBRATI~NALENERGYDIFFERENCES(UPPER ENTRY)WITH 

COMPUTED(MIDDLEENTRY); UNITS Cm-' 

AC K=O K=l K=2 K=3 K=4 K=5 

1-o 

2-I 

3-2 

4-3 

5-4 

6-5 

l-6 

8-7 

2524.32 
252525 

- .93 

2388.26 
2388.75 

- .49 

2256.10 
2254.79 

+ 1.31 

2126.86 
2121. 

+ 6, 

2521.07 
2521.99 

- .92 

2385.12 
2385.57 

- .45 

2253.05 
2251.6 

+ 1.45 

2123.85 
21 18.0 

+ 5.8 

1996.57 
1983.1 
+ 13.5 

1869.80 
1845.7 
+24.1 

1742.15 
1705.0 
+ 37.2 

1612.5 
1560.5 
+ 52.0 

2514.55 2504.85 
2515.48 2505.77 

- 93 -.92 

2378.80 2369.41 
2319.22 2369.8 1 

- .42 - .40 

2246.91 2237.77 
2245.39 2236.04 

+ 1.52 + 1.73 

2117.78 2108.83 
2112, 2103. 

+6. +6, 

1990.58 1981.75 

2492.00 
2492.91 

-.91 

2357.06 
2357.23 

-.17 

2225.60 
2223.65 

+ 1.95 

2096.57 
2092. 

+ 5. 

2476.13 
2476.98 

-.85 

2341.63 
2341.70 

- .07 

2210.39 
2208.29 

+2,10 

TABLE ~.COMPARISON OF THEOBSERVED"~.~~) ROTATIONALENERGY DIFFERENCES(KJPPER ENTRY)W~TH 

C~MP~TED(MIDDLEENTRY);UNITS~~- 

AK v=o v= 1 v=2 v=3 v=4 

2-o 199.51 189.75 18@26 171.05 162. 
199-64 189.86 180.34 170.94 162, 

-.13 -,l I - .08 +.11 0 

3-l 330.76 3 14.54 298.83 283.57 
330.98 314.71 298.95 283.37 

- ,22 -.I7 -.I2 + .20 

4-2 459.44 
459.15 

-,31 

5-3 584.64 
585.02 

-.38 

6-4 705.57 
705.94 

-.31 

7-5 821.24 
821.75 

-.51 

436.91 415.05 393.73 
437.18 415.18 393.45 

- ,27 -.I3 + .28 

268.5 
269. 

-.5 

372.5 
373. 

-.5 

555.85 528.02 
556.23 528.17 

-.38 -,I5 

670.91 636.93 
671.10 637.13 

-.19 -,20 

780.62 741.29 
78 1.08 741.36 

- .46 - .07 

500.9 
500.4 

+.5 

604.09 
603.49 

+ .60 



1562 ROBERT 0. DOYLE 

TABLE 2 (continued) 

AK v=o v= I I/=2 v=3 1’ = 4 
_.-._ 

8-6 931.17 
931.84 

- .67 

9-7 1035.07 
1035.69 

- .62 

(h) C,,(R) und thr continuum wuoefimctions 

The repulsive interaction potential of two ground-state hydrogen atoms in parallel 
spin states was recently calculated by KOLOS and W~LNIEAVI~Z,“~ who gave a table of 
numerical values. We find it more convenient to use an analytic approximation to an 
earlier second-order perturbation theory calculation by DALCAKNO and LYNN,(~” which 

differs only slightly from the more recent values : 

E&R) = 109 737.3 5;2!(2, + 2.334R + 0.78R2 + 1 .036R3 

+ 1.728R4)-0.0062 
I 

; O<R<2: 

= 109 737.3(5.7722R2e-2’3’R+ f81.R”eeh’0”4R); 2<R14; 

= 109 737.3(20.533ee”77R- 13.R~“-428.R~“); 4 < R. (17) 

The dimensions are cm- ’ ; R is in u. (atomic units). 

With this potential curve, the nuclear equation is integrated numerically, this time to 
give wave functions asymptotic to zero for decreasing internuclear distance only. At 
large internuclear distance these continuum wave functions are made asymptotic to 
amplitude unity, in accordance with equation (9). 

For each bound state c. J’, a unique set of 20 continuum wave functions is determined, 
IO with J” = J’ + 1 and 10 with J” = .I’- 1. Each continuum function is located below 
the upper state by 1 of 10 standard transition energies, which enables us to sum equation 
(15) without interpolation. Figure 1 shows c,(R) and c,,(R) and some typical wave functions. 
Figure 2 illustrates the effect of the addition of rotational potential energy. 

(c) T/w electronic. dipole moment D,,(R) 

Values of the electronic dipole moment were calculated by JAMES and COOL.IDGE”‘) 
for 10 internuclear separations between 1.3~1~ and 2.9~1~. They estimate the probable 
error as “a very few percent”. To interpolate values analytically, we use the following 
polynomial, which fits the 10 points with an accuracy of better than 2 per cent, 

D,,,,(R) = 2.358 + 0.4857R -0.9268R’ + 0.3605R3” - 0.0445 I R4 ; R I 2.9~“. (18) 
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From perturbation theory, a series expansion of D,,(R) for large internuclear separation 
in inverse powers of the separation is found to have Rp7 as the leading term. Fitting to 
equation (18) at 2.9~“. we have 

D,,(R) = 7031R-‘-17334Rm”; R > 2.9~~. 

The dimensions are ra,(atomic units). 

(d) Truncation oj’tlw infinitr sums und other sources oj‘cwor 

The rotational remainder terms in equation (15) from the cutoff values J,(U) to J = #r; 
are estimated by multiplying the J,th contribution by a rotational partition function for 
the remaining states and replacing the sum by an integral : 

Z(J,.. T) E 1 oi,(2J + 1) exp - [J(J + l)h2/2pr:kT] 
J<. 

= -hTm- exp - [J,(J, + l)h2/2&kT]. 

where rc is the equilibrium internuclear distance of the J,th rotational state. 
We can also make an estimate of the effect of c-truncation by noting that the strong 

exponential decrease usually means that the contribution from a given c-level is the same 
order of magnitude as the sum of contributions from all higher [l-levels. 

In Table 3 we give the final numerical results, which include the above rotational 

remainder terms. The amount shown in parentheses is the contribution (already included) 

TABLE 3. CONTINUOUS ABSOKPTION COEFFICIENT OF THE HYDKOGEN QUASI-MOLECULP* 

Wavelength (A) 3000°K 5000°K 8000” K 

1540 

1750 

2000 

2222 

2500 

3000 

3640 

4500 

6667 

3.40x 10~ J2 

(+,04x lo-‘lJ 

621 x lomJ’ 
1+,03x 10-J”) 

5.93x IO A4 

t+.o 1 
9 IO x 1om4s 

t+:o 1 
I~IZX x lo- -:s 

I +.o ) 
5.50 x IO 4’ 

t+.o 1 
2.893 x 1o-4x 

t+o 1 
I.33 x lo-“” 

(+.tJ ) 
Y.79 x 10-S’ 

(+.02x IO 52) 

5.4x x IO 42 
(t-15x IO Q) 

21x x 10 ~1L 
(+.03x lo-“*1 

4.86 x IO J1 
(+.04x IO aA) 

1.41, Y 10-J’ 

c + 3 ) 
4.02x lo-“” 

I +4 1 
630x IO ” 

I + ,o 1 
I.041 x lo-” 

t+.o 1 
1.47 x IO ~dh 

(+4 1 
5.32 x lo- 4s 

(+.0x x 10-S”) 

* For the ISCT~SCJ “Xl + l.sc~2prr “&+ transttion. The upper entry is the double summation of equation (15) 
corrected for rotational truncation. The lower entry is the correction for vibrational truncation. The units arc 
cm’ per 13 atom squared. To get the absorption cross section per tI atom, multiply by the density n,,. To set 

AC’” in cm ‘. multiply by II;_ 
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of the last vibrational level. At 3000°K and 154OA the absorption coefficient is 

3.40 x 1O-42 cm5 and the last u-term contributes 0.04 x 1O-42 to the sum, so that 344 x 
1O-42 is a slight overestimate of the total contribution from all u. The results in Table 3 
and those for other temperatures are shown in Fig. 3. 

WAVELENGTH (i, 

1750 2200 3000 4500 
I540 2000 2500 3640 6667 

I 
I I I I I I I I 

-sol-_I I I\ I I I I I\ I I I 
70 60 50 40 30 20 

WAVENUMBER (IO” cm?, 

FIG. 3. The total absorption coefficient of the transition from the lsa2pa “Z: state of the hydrogen 
quasi-molecule to the bound lso2sa “Xl state of Hz. To get the absorption cross section per 

hydrogen atom. multiply by the density nH. To get Lt-’ in cm-’ multiply by ni. 

Values of the individual rotational remainder terms for each level v and the fractional 
contribution each vibrational level makes to the total transition probability can be found 
in DoYJ_E.(~~’ This reference also includes a discussion of the sources of error in the calcula- 
tion. The major uncertainty is the electronic dipole moment operator D,,(R), which contri- 
butes the bulk of a fixed probable error of + 10 per cent below densities of nH = 102’ cme3 
and temperatures of 8000°K. Above this temperature the errors involved in neglecting 
higher electronic states become of the same order of magnitude (+ 10 per cent) and 
increase with increasing temperature. Above this density an estimate of the neglect of 
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three-body collisions indicates that about 10 per cent of the photon absorptions occur 
when a third hydrogen atom is within molecular dimensions ( < 5~) of the quasi-molecule. 
and this too increases with increasing density. 

4. COMPARISON WITH PREVIOUS RF.SUL.IS 

In order to compare our results with those that neglect the rotational dependence of 

the matrix element, let us briefly describe the assumptions needed to derive the rotation- 
less result from equation (15). 

First, we note that 

s ~j;,J,+l(R)D,,(R).~%,,,(R)dR 1 &.. ,(R)D,,(R).&;,J,(R)dR. 
s 

and that both of these can be approximated by 

Second, the matrix element must not be taken as independent of J’, as is frequently 
assumed; but it must have a specific dependence that cancels the J’-dependence of the 
square root of the continuum energy in equation (15) viz., 

s .~j;.J.(R)oh,(R)~~,~,(R) dR = (2’;;;) 1/d j .%~.o(R)Dh,(R)&‘~,o(R) dR. (20) 

COOLIDGE, JAMES and PRESENT(') have given rough justification for such a dependence 

by a WKB argument about the average height of the terminal loop of the continuum 
wave function. In this case the entire J’-dependence of the remaining expression is in the 

terms 

c W,.(2J’ + 1) exp - [(E,,.J. - E,,,)/liT] 3 Z(T). (21) 
J’=O 

If we make the third assumption that the spacing of the rotational levels in the bound 
state is that of a rigid rotator at the equilibrium internuclear separation of the bound 

state, 

LY - J&o = J’(J’ -t l)h’/2pr;. (22) 

then the rotational partition function Z(T) becomes, 

(23) 

Note that the symmetry factor 0 = 2 (Pauli exclusion of half of the nuclear spin states) 
appears explicitly. 
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If we make these three approximations, equation (15) becomes 

Rb_0 _ 87r3v 3 2 It3 2prikT 
” 

- 3hc 4nH@qikT)3’2 oh2 

x 1 exp - KLo - WkTl2 
L 

1 
2 

X a~,o(R)D,,(R)~~.o(R)dR , (24) 

an expression that is approximately equivalent to multiplying the J’ = 0 contribution of 
equation (15) by the rotational partition function (23), and which we shall therefore refer 
to as the J’ = 0 calculation in Figs. 4, 5, and 6. 

Finally, if we use the Condon “reflection method”“4~‘5’ and replace the continuum 

wave function by a h-function different from zero only at the classical turning point of 
the motion RT(EavO - IN), the matrix element in equation (24) becomes 

s 
~~,o(WUR)%.o(R) dR - &(RT)K.o(RT). (25) 

The calculations by SOLOMON(' 2, using this approximation are also shown in Figs. 4, 5, 

and 6. 

The differences between the b-function calculation and the J’ = 0 calculation, which 
uses complete continuum wave functions, are generally the same as those found by 
JAMES and COOLIDGE(‘) (see their Fig. 4) with the S-function calculation overestimating 

r 1 I t 

1.5 t 
T= -mnn~ ____ 

. 
I I I I 

I I 1 

1540 1750 2000 2222 2500 3000 3640 4500 6667 

WAVELENGTH 6% 

FIG. 4. The ratio of the J’ = 0 approximation, equation (24), to the detailed summation over 
rotational states. equation (15); and the ratio of Solomon’s (1964) calculation using the d-function 

approximation, equation (25), to the detailed summation. 
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Frc;. 5. The ratio of the J' = 0 approximation. equation (24). to the detailed summatton over 
rotational states, equation (15): and the ratio of Solomon’s (1964) calculation using the S-functton 

approximation, equation (2.5). to the detailed summation. 

WAVELENGTH (8) 

FK. 6. The ratio of the J’ = 0 approximation, equation (24), to the detatled summation over 
rotational states, equation (15); and the ratio of Solomon’s (1964) calculation using the a-function 

approximation, equation (25) to the detailed summation. 
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the long-wavelength contributions and underestimating those at short wavelengths. The 
strong variations in the difference at long wavelengths are probably caused by the different 

potential-energy curves used by Solomon. 

5. CONCLUSIONS 

The errors introduced into calculations of continuous molecular spectra with the 
assumption that all rotational states contribute the same as the J’ = 0 rotational state 

are of the same order of magnitude as or larger than those introduced by the use of 6- 
functions as continuum wave functions, for temperatures at which several rotational states 

are populated. 
For the purposes of a rough calculation, we suggest that a minimum account may be 

taken of the rotational dependence if we use as typical matrix element in equation (24) 
not that for the J’ = 0 rotational state but that for the state with the known maximum 
population at the given equilibrium temperature. For the temperatures of Figs. 4 to 6, 

which are typical of stellar surface temperatures, the rotational states with the maximum 
thermal population in the bound state lsa2so “Cl are 5,,,(3000”K) = 5.0, J,,,(5000”K) 
= 6.6, and J,,,(8OOO”K) = 8.4. The accuracy of this approximation is being investigated. 
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